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Random symmetric matrices with a constraint: The spectral density
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We derive the mean eigenvalue density for symmetric Gaussian raNdolsh matrices in the limit of large
N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be
equivalent to a result found recently for the average density of resonances in random impedance pétworks
Fyodorov, J. Phys. 82, 7429(1999]. In the case of banded matrices, the analytical results are compared with
those extracted from the numerical solution of Kirchhoff equations for quasi-one-dimensional random imped-
ance networks.
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The study of random matricgd] has provided insight |. FORMULATION OF THE PROBLEM
into n_1any phys_lcal problems, both in the quan_tum and in the We consider an ensemble df<N random matricesvl
classical domain. For example, random matrices have beqn. .

. X ~"With matrix elements

very successfully used to model statistical properties of dis-
ordered conductors and of highly excited classically chaotic N
guantum systemf2]. In the classical domain random matri- Mmn=Jdmn— 5mn2 Jmi» (1)
ces arise, for instance, in the context of diffusion in random, =1

directed environmentésee, for example, Ref3], and refer- ) ) o
whereJ is a real symmetridN X N matrix with random en-

ences therein In most of those applications the random- . Such bl h b idered in Ref
matrix elements obeyed symmetry requirements where a;]{;'es' uch ensembles have Dbeen considered in Rels.
[

propriate, and were otherwise taken to be independent 6’7'1.(.)’11 In Ref. [10], M was use.d.to model a randqm
distributed random variables. ransition matrix for a model describing glassy relaxation,

There are cases, however, where constraints on the matr‘9 u(t)=—Mu(t), with matrix elementsy, distributed in-
o ' . ependently(subject to the constraint,,,=J,,,) according
elements must be considered. Such constraints generate oy

relations between the latter; examples are electron hopping
in amorphous semiconductof(see Ref[4], and references P(J,m)= (PIN) 8(Jn— 1Ip) + (1= pIN)8(J,r). (2)
cited therein, random impedance network§-7] (see Ref.
[8] for review and Ref[9] for applications, and random  The form of Eq.(1) yields =,M,,=0, implying probability
master equationglQ]: in these cases, the random matricesconservation in the problem considered in Ref0]. The
obey the constraints that the row sums of matrix elementaverage densitd(\) of eigenvalues,
should be zero. This condition implies correlations between
diagonal and off-diagonal matrix elements. In R¢#56,10, d(\)=N"Ytr (M —\1)), 3)
the average spectral density and spectral fluctuations of three _ o _
different random-matrix ensembles of this type were calcuWas calculated in the limit of largd andp, using the method
lated, using the method of replicas and the supersymmetrgf replicas(- - -) is an average over the ensemble defined by
approach. (Imn)- _ _ _

In this paper, we derive the average density of eigenvalues N Ref. [6], eigenvalues of matrices with elements
of a suitably modified ensemble of symmetric Gaussian ranSimilar to Eq.(1) were shown to model resonance frequen-
dom matrices. The aim is twofold. First, we wish to show Cies in random impedance networlid, with Jpm,=Jnm and
that for full matrices the density obtained is equivalent to
that found in Refs[6,10]. Our second aim is to derive the P(Imn) =3 80mn— 1)+ 3 8(Impt1). (4)
corresponding result for banded matrices, and to compare it
with the results of the numerical solution of the Kirchhoff In Refs.[6,7] the average density of resonance frequencies
equations on random impedance networks with quasi-onewas calculated, in the limit of largd, using a variant of the
dimensional topology. supersymmetry technique. It was found that the result agrees
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TN AJV\/.Z =@2m0®N) " 45’N—E? for |E|<2(c?N)*? and zero oth-
(a) (M M) = —4 — 4 erwise[13]. In the following, we ask how imposing a “con-
ij § i i i 44 straint” (that the row sum of matrix elements should be zero
modifies the mean eigenvalue densityMfwith respect to
: Gj; = ——. that of J. In the limit of largeN, the problem may be solved
J J J using diagrammatic perturbation theofgee, for instance
- Ref. [3], and references cited thergims shown below.
g ~ / ~ Our results may be summarized as follows. In the limit of
—— W _\ —é . - large N, the averaged eigenvalue density fdr coincides
g v v ) k J with the result derived in Ref$6,7]. In this limit, correla-
.= tions between diagonal and off-diagonal matrix elements are
(@ N \ found to be irrelevant, and the result can be understood in
i i 3§ 3 terms of an averaged Pastur equatfitd]. Furthermore, we
have also considered the case of banded symmetric random
matrices. This case is of interest for random impedance net-
(e) . S LD D S works with quasi-one-dimensional topolog§,11]. Our re-
>3 3 73 3 sults are in good agreement with those of exact numerical
solutions of the Kirchhoff equations for such networks.

(b) GP=a1=

(c)

FIG. 1. (a) Contraction{M;;M;;): the dashed line carries a fac-
tor of 1N and the wavy line carries a factor of unity. The second
term contributes only when=j. (b) Graphical representation of Il. METHOD
G{Y=E~'andG;;, thejth diagonal matrix element of the average
resolventG. (c) Example of a diagram contributing ®;; . Internal
indices are summed over &ndk). (d) and(e) Diagrams of higher

order inN~™. d(E)=—(N#) limtrG. (6)

The average eigenvalue density may be obtained from the
trace of the averaged resolve®t=((E1—M) 1),

[12] with that of Ref.[10], up to a scale factairelated top)  Expanding the resolvent, Wick's theorem may be employed
and a rlgld shift in\ [relatEd to the fact thalmnBO in Eq for performing the average, using
2)].
In the following, we calculate the ensemble-averaged den- (M;;M ) = az[(éiméjn+ 3in6im) ~ Omn( SimSji + i Ojm)
sity of eigenvalues oM, treating both off-diagonal and di-
agonal entries ofl as independent, identically distributed = 8ij(8imOknt Sin Skm) + i Smn(Nim+ 1) ].

Gaussian real variables. The corresponding symmetric ran- (7
dom matrixJ belongs to the Gaussian orthogonal ensemble
[1] with joint probability density In the limit of largeN, adopting the scaling®=N"1, Eq.

(7) can be simplified to
P(J)dJxexp— (1/402)tr J2dJ. (5) -
(M{jM = N"1(8imjn+ 8inOjm) + 8ij Omndim - (8)
The average density of eigenvalueé®f such matrices in the

- ) . . Iti nvenien k track of th ntributions with th
limt N>1 is given by the semicircular lawd(E) tis convenient to keep track of the contributions ©

help of diagrams. To this end, a graphical representation of
the contraction(8) is introduced in Fig. (a). The averaged

Z ﬁ resolventG turns out to be a diagonal matrix. Figurébl

(2) O— =——+ defines a graphical representation for the diagonal elements
Gj; of G. Terms contributing td5;; are shown in Fig. c—
e). One observes that, in the limit of largé only diagrams

+ —e—igﬁe-igie— with no intersections between dashed or between dashed and

wavy lines contribute. Thus, to leading orderNh the con-
tribution (c) in Fig. 1 must be considered, but nab or (e),

" %_P . for example.

All diagrams contributing to the resolvent to leading order

PN in N~ may be summed, resulting in a set of two coupled
() —O— = + s o equations shown in Figs.(@ and 2b). The diagonal ele-
j j j j 2 j mentsG;; andHj; are independent gf and denoted by
andH in the following. The first equatiofFig. 2(@)] contains
(c) Hjj=—&— an infinite sum of diagrams. This sum may be performed
Y Y exactly. It is denoted bg(H 1), where
FIG. 2. (8) and(b) Self-consistent equations for the average of " exp(— J%12)
E'Ie resolvent(c) Graphical representation of the auxiliary functions g(2)= (277)71/2f_ quZT' 9)

i
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The result for the resolvent scales with’> and N as 0.3 pi

(0®N) " Y2g[H~%(0®N)¥?]. Consequently, the equations — -
shown in Fig. 2a,b imply the following self-consistent ‘
equation:

G=(a’N)""g[(E-G)(a*N)"?], (10

equivalent to Eq(51) in Ref.[6] for the average density of
resonances in an ensemble of highly connected random im-
pedance networkfsl5].

The form of the simplified contractio(8) implies an in-
terpretation of the resultLlO) in terms of an averaged Pastur
equation: consider a random matfiz=J+V, whereJ is
distributed according to Ed5), andV is a diagonal matrix

with Gaussian random entrieg, with zero mean and unit X
variance, independent df,,,. For a given realization o¥, ) ) . o
Pastur's equatiofil4] is G=(E1-V—G)~! (see also Ref. FIG. 3. Density of eigenvalues of exact diagonalizations of ran-

dom matrices of the fornil), (5) for c=1, N=500,1000, and

[16], and references therginin this equationG is the  _g 160cumiols, together with the predictiofi3) (solid line).

J-averaged resolvent, keepiMgfixed. One obtains Eq10)
after observing thats is diagonal, by averaging over the
matrix elements o¥. This interpretation implies that, in the
limit of large N, the correlations between diagonal and off-
diagonal matrix elements &l [as seen in Eqg1) and (7)]
are irrelevant.

The above procedure is easily extended to the case of
banded matrices, also of interest in random impedance net- Random networks of complex impedances are currently
works [5,11]. In the banded case{JanH):az(@mk&m used to model electrical and optical properties of disordered

In the following, we show that Eq13) also describes the
density of resonances for certain random impedance net-
works with a large, but finite connectivity.

Ill. RANDOM IMPEDANCE NETWORKS

+ 8midnk) [which follows from Eq.(5)] is replaced by inhomogeneous medig8]. The most common situation is
that of a binary composite medium, modeled by attributing a
(Imdi) = a2(|m=n]) (SmiSni+ SmiSnk)- (11 random conductance to each bongly) of a lattice, accord-

ing to the binary law:
The functiono?(x) is given by , -
oo Wwith probability p
a? for 0=x=<b/2 %y~ | &, with probability gq=1—p. (14
o?(x)= 0 otherwi (12
otherwise. The homogeneous Kirchhoff equations for the electric poten-

tials,
The bandwidth ofl is thusb. In the limit of largeN and large s

b, the spectral density is given by a slight modification of Eq.
(10), 2 iy(Vy =V =0, (15

G=(o%b) Yg[(E-G)(a%b)"4. (13 can be recast as

Diagrammatically, the necessary changes are most easily de- (Ag—NA)V=0, (16)
rived by lettingo?=N"1 and assuming thay=BN (with _

fixed B). Then the wavy line in Fig. (&) acquires a factor of With A=0¢/(oo—073), and

B. Furthermore, the dashed line in E@®) also acquires a

factor of B. Hence, the self-consistency equation in the — (Ay) => (Vy=Vy), (ApV),= EX) (Vy—V,),

banded case becomésl). Let us also note that the same y(x) yeP(
formula is actually valid not only fob~N, but more gen- (17)
erally for 1<b<<N. B B

This result implies that densities for different valuesbof (AQV)X_yEEQ(x) (Vy=Va,

can be scaled on one single curve by plottifizd(E/ \/b). In

Fig. 3, solutions of Eq(13) for o=1 are compared with wherey(x) are all the sites connected to ske whereasy
results of exact diagonalizations of random matrices With e P(x) (ye Q(x)) are those connected by a conductaoge
=500,1000, andb=50,100. We observe a very good agree-(o4), so thatA=Ap+Aq. Resonances appear as nontrivial
ment. The results confirm that, for lareandb, the average solutions to Eq(16), for 0<A<1.

density of eigenvalues is independent\yfand that it scales An efficient algorithm allowing for an exact determina-
with b as expected. tion of all the resonances of a finite sample has been devel-
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FIG. 4. Topology of alquas) one-dimensional lattice with pe-
riodic boundary conditions. Each siteis connected to ith=4
neighbors.

FIG. 5. Plot of the density of resonances for a quasi-one-
dimensional random impedance netwdgsee text Data for three
different ranges l§=60, 100, and 120)symbols are compared
. ) ) .~ with the theoretical predictiofil3).
oped in Ref[5]. We have adapted this algorithm to the sim-
plest geometry allowing for long-ranged bonds. Each site —(14E)/2 the density is given by Eq13) with o=1. A

of a very long chain is connected to its neighbors 0 yery satisfactory quantitative agreement with the theoretical
—b/2,...n=1n+1,...n+Db/2), as shown in Fig. 4. Pe- prediction is observed.

riodic boundary conditions are assumed. For definiteness, we
choosep=q=1/2, so that all the resonances are expected to
be located ah =1/2 in theb— o limit.

Our numerical results are shown in Fig. 5, for very long  Discussions with J. T. Chalker are gratefully acknowl-
periodic chains with rangels=60, 100, and 120. For each edged. Further, support from Vetenskapsta EU network
value ofb, we have accumulated a number of resonances dPTRANS (J.S. and B.M, and EPSRC Research Grant No.
order 10. After rescaling the resonances accordinghto GR/13838/01(Y.V.F) is acknowledged with thanks.
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