
PHYSICAL REVIEW E 67, 047101 ~2003!
Random symmetric matrices with a constraint: The spectral density
of random impedance networks
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We derive the mean eigenvalue density for symmetric Gaussian randomN3N matrices in the limit of large
N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be
equivalent to a result found recently for the average density of resonances in random impedance networks@Y.V.
Fyodorov, J. Phys. A32, 7429~1999!#. In the case of banded matrices, the analytical results are compared with
those extracted from the numerical solution of Kirchhoff equations for quasi-one-dimensional random imped-
ance networks.
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The study of random matrices@1# has provided insight
into many physical problems, both in the quantum and in
classical domain. For example, random matrices have b
very successfully used to model statistical properties of
ordered conductors and of highly excited classically cha
quantum systems@2#. In the classical domain random matr
ces arise, for instance, in the context of diffusion in rando
directed environments~see, for example, Ref.@3#, and refer-
ences therein!. In most of those applications the random
matrix elements obeyed symmetry requirements where
propriate, and were otherwise taken to be independe
distributed random variables.

There are cases, however, where constraints on the m
elements must be considered. Such constraints generate
relations between the latter; examples are electron hop
in amorphous semiconductors~see Ref.@4#, and references
cited therein!, random impedance networks@5–7# ~see Ref.
@8# for review and Ref.@9# for applications!, and random
master equations@10#: in these cases, the random matric
obey the constraints that the row sums of matrix eleme
should be zero. This condition implies correlations betwe
diagonal and off-diagonal matrix elements. In Refs.@4,6,10#,
the average spectral density and spectral fluctuations of t
different random-matrix ensembles of this type were cal
lated, using the method of replicas and the supersymm
approach.

In this paper, we derive the average density of eigenva
of a suitably modified ensemble of symmetric Gaussian r
dom matrices. The aim is twofold. First, we wish to sho
that for full matrices the density obtained is equivalent
that found in Refs.@6,10#. Our second aim is to derive th
corresponding result for banded matrices, and to compa
with the results of the numerical solution of the Kirchho
equations on random impedance networks with quasi-o
dimensional topology.
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I. FORMULATION OF THE PROBLEM

We consider an ensemble ofN3N random matricesM
with matrix elements

Mmn5Jmn2dmn(
l 51

N

Jml , ~1!

whereJ is a real symmetricN3N matrix with random en-
tries. Such ensembles have been considered in R
@6,7,10,11#. In Ref. @10#, M was used to model a random
transition matrix for a model describing glassy relaxatio
] tu(t)52Mu(t), with matrix elementsJmn distributed in-
dependently~subject to the constraintJmn5Jnm) according
to

P~Jmn!5 ~p/N! d~Jmn2 1/p!1~12 p/N!d~Jmn!. ~2!

The form of Eq.~1! yields (nMmn50, implying probability
conservation in the problem considered in Ref.@10#. The
average densityd(l) of eigenvaluesl,

d~l!5N21^tr d~M2l1!&, ~3!

was calculated in the limit of largeN andp, using the method
of replicas.̂ •••& is an average over the ensemble defined
P(Jmn).

In Ref. @6#, eigenvalues of matricesM with elements
similar to Eq.~1! were shown to model resonance freque
cies in random impedance networks@5#, with Jmn5Jnm and

P~Jmn!5 1
2 d~Jmn21!1 1

2 d~Jmn11!. ~4!

In Refs. @6,7# the average density of resonance frequenc
was calculated, in the limit of largeN, using a variant of the
supersymmetry technique. It was found that the result ag
©2003 The American Physical Society01-1
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@12# with that of Ref.@10#, up to a scale factor~related top)
and a rigid shift inl @related to the fact thatJmn>0 in Eq.
~2!#.

In the following, we calculate the ensemble-averaged d
sity of eigenvalues ofM , treating both off-diagonal and di
agonal entries ofJ as independent, identically distribute
Gaussian real variables. The corresponding symmetric
dom matrixJ belongs to the Gaussian orthogonal ensem
@1# with joint probability density

P~J!dJ}exp2 ~1/4s2!tr J2dJ. ~5!

The average density of eigenvaluesE of such matrices in the
limit N@1 is given by the semicircular lawd(E)

FIG. 1. ~a! Contraction̂ Mi j M ji &: the dashed line carries a fac
tor of 1/N and the wavy line carries a factor of unity. The seco
term contributes only wheni 5 j . ~b! Graphical representation o
Gj j

(0)[E21 andGj j , the j th diagonal matrix element of the averag
resolventG. ~c! Example of a diagram contributing toGj j . Internal
indices are summed over (i andk). ~d! and~e! Diagrams of higher
order inN21.

FIG. 2. ~a! and ~b! Self-consistent equations for the average
the resolvent.~c! Graphical representation of the auxiliary functio
H j j .
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5(2ps2N)21A4s2N2E2 for uEu<2(s2N)1/2 and zero oth-
erwise@13#. In the following, we ask how imposing a ‘‘con
straint’’ ~that the row sum of matrix elements should be ze!
modifies the mean eigenvalue density ofM with respect to
that ofJ. In the limit of largeN, the problem may be solved
using diagrammatic perturbation theory~see, for instance
Ref. @3#, and references cited therein!, as shown below.

Our results may be summarized as follows. In the limit
large N, the averaged eigenvalue density forM coincides
with the result derived in Refs.@6,7#. In this limit, correla-
tions between diagonal and off-diagonal matrix elements
found to be irrelevant, and the result can be understood
terms of an averaged Pastur equation@14#. Furthermore, we
have also considered the case of banded symmetric ran
matrices. This case is of interest for random impedance
works with quasi-one-dimensional topology@5,11#. Our re-
sults are in good agreement with those of exact numer
solutions of the Kirchhoff equations for such networks.

II. METHOD

The average eigenvalue density may be obtained from
trace of the averaged resolventG5^(E12M )21&,

d~E!52~Np!21Im tr G. ~6!

Expanding the resolvent, Wick’s theorem may be employ
for performing the average, using

^Mi j Mmn&5s2@~d imd jn1d ind jm!2dmn~d imd j l 1d i l d jm!

2d i j ~d imdkn1d indkm!1d i j dmn~Nd im11!#.

~7!

In the limit of largeN, adopting the scalings25N21, Eq.
~7! can be simplified to

^Mi j Mmn&. N21 ~d imd jn1d ind jm!1d i j dmnd im . ~8!

It is convenient to keep track of the contributions with t
help of diagrams. To this end, a graphical representation
the contraction~8! is introduced in Fig. 1~a!. The averaged
resolventG turns out to be a diagonal matrix. Figure 1~b!
defines a graphical representation for the diagonal elem
Gj j of G. Terms contributing toGj j are shown in Fig. 1~c–
e!. One observes that, in the limit of largeN, only diagrams
with no intersections between dashed or between dashed
wavy lines contribute. Thus, to leading order inN, the con-
tribution ~c! in Fig. 1 must be considered, but not~d! or ~e!,
for example.

All diagrams contributing to the resolvent to leading ord
in N21 may be summed, resulting in a set of two coupl
equations shown in Figs. 2~a! and 2~b!. The diagonal ele-
mentsGj j and H j j are independent ofj and denoted byG
andH in the following. The first equation@Fig. 2~a!# contains
an infinite sum of diagrams. This sum may be perform
exactly. It is denoted byg(H21), where

g~z!5~2p!21/2E
2`

`

dJ
exp~2J2/2!

z2J
. ~9!

f
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The result for the resolvent scales withs2 and N as
(s2N)21/2g@H21(s2N)1/2#. Consequently, the equation
shown in Fig. 2~a,b! imply the following self-consisten
equation:

G5~s2N!21/2g@~E2G!~s2N!1/2#, ~10!

equivalent to Eq.~51! in Ref. @6# for the average density o
resonances in an ensemble of highly connected random
pedance networks@15#.

The form of the simplified contraction~8! implies an in-
terpretation of the result~10! in terms of an averaged Past
equation: consider a random matrixM5J1V, whereJ is
distributed according to Eq.~5!, andV is a diagonal matrix
with Gaussian random entriesvk with zero mean and uni
variance, independent ofJmn . For a given realization ofV,
Pastur’s equation@14# is G5(E12V2G)21 ~see also Ref.
@16#, and references therein!. In this equationG is the
J-averaged resolvent, keepingV fixed. One obtains Eq.~10!
after observing thatG is diagonal, by averaging over th
matrix elements ofV. This interpretation implies that, in th
limit of large N, the correlations between diagonal and o
diagonal matrix elements ofM @as seen in Eqs.~1! and ~7!#
are irrelevant.

The above procedure is easily extended to the cas
banded matrices, also of interest in random impedance
works @5,11#. In the banded case,̂JmnJkl&5s2(dmkdnl
1dmldnk) @which follows from Eq.~5!# is replaced by

^JmnJkl&5s2~ um2nu!~dmkdnl1dmldnk!. ~11!

The functions2(x) is given by

s2~x!5H s2 for 0<x<b/2

0 otherwise.
~12!

The bandwidth ofJ is thusb. In the limit of largeN and large
b, the spectral density is given by a slight modification of E
~10!,

G5~s2b!21/2g@~E2G!~s2b!1/2#. ~13!

Diagrammatically, the necessary changes are most easily
rived by letting s25N21 and assuming thatb5BN ~with
fixed B). Then the wavy line in Fig. 1~a! acquires a factor of
B. Furthermore, the dashed line in Eq.~8! also acquires a
factor of B. Hence, the self-consistency equation in t
banded case becomes~13!. Let us also note that the sam
formula is actually valid not only forb;N, but more gen-
erally for 1!b!N.

This result implies that densities for different values ob
can be scaled on one single curve by plottingAbd(E/Ab). In
Fig. 3, solutions of Eq.~13! for s51 are compared with
results of exact diagonalizations of random matrices withN
5500,1000, andb550,100. We observe a very good agre
ment. The results confirm that, for largeN andb, the average
density of eigenvalues is independent ofN, and that it scales
with b as expected.
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In the following, we show that Eq.~13! also describes the
density of resonances for certain random impedance
works with a large, but finite connectivity.

III. RANDOM IMPEDANCE NETWORKS

Random networks of complex impedances are curre
used to model electrical and optical properties of disorde
inhomogeneous media@8#. The most common situation i
that of a binary composite medium, modeled by attributin
random conductance to each bond (x,y) of a lattice, accord-
ing to the binary law:

sx,y5H s0 with probability p

s1 with probability q512p.
~14!

The homogeneous Kirchhoff equations for the electric pot
tials,

(
y

sx,y~Vy2Vx!50, ~15!

can be recast as

~DQ2lD!V50, ~16!

with l5s0 /(s02s1), and

~DV!x5(
y(x)

~Vy2Vx!, ~DPV!x5 (
yPP(x)

~Vy2Vx!,

~17!

~DQV!x5 (
yPQ(x)

~Vy2Vx!,

wherey(x) are all the sites connected to sitex, whereasy
PP(x) „yPQ(x)… are those connected by a conductances0
(s1), so thatD5DP1DQ . Resonances appear as nontriv
solutions to Eq.~16!, for 0,l,1.

An efficient algorithm allowing for an exact determina
tion of all the resonances of a finite sample has been de

FIG. 3. Density of eigenvalues of exact diagonalizations of r
dom matrices of the form~1!, ~5! for s51, N5500,1000, andb
550,100~symbols!, together with the prediction~13! ~solid line!.
1-3
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oped in Ref.@5#. We have adapted this algorithm to the sim
plest geometry allowing for long-ranged bonds. Each sitn
of a very long chain is connected to itsb neighbors (n
2b/2, . . . ,n21,n11, . . . ,n1b/2), as shown in Fig. 4. Pe
riodic boundary conditions are assumed. For definiteness
choosep5q51/2, so that all the resonances are expecte
be located atl51/2 in theb→` limit.

Our numerical results are shown in Fig. 5, for very lo
periodic chains with rangesb560, 100, and 120. For eac
value ofb, we have accumulated a number of resonance
order 107. After rescaling the resonances according tol

FIG. 4. Topology of a~quasi! one-dimensional lattice with pe
riodic boundary conditions. Each siten is connected to itsb54
neighbors.
of

ys
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5(11E)/2 the density is given by Eq.~13! with s51. A
very satisfactory quantitative agreement with the theoret
prediction is observed.
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FIG. 5. Plot of the density of resonances for a quasi-o
dimensional random impedance network~see text!. Data for three
different ranges (b560, 100, and 120)~symbols! are compared
with the theoretical prediction~13!.
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